skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Hongzhi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Graph-theoretic algorithms and graph machine learning models are essential tools for addressing many real-life problems, such as social network analysis and bioinformatics. To support large-scale graph analytics, graph-parallel systems have been actively developed for over one decade, such as Google’s Pregel and Spark’s GraphX, which (i) promote a think-like-a-vertex computing model and target (ii) iterative algorithms and (iii) those problems that output a value for each vertex. However, this model is too restricted for supporting the rich set of heterogeneous operations for graph analytics and machine learning that many real applications demand. In recent years, two new trends emerge in graph-parallel systems research: (1) a novel think-like-a-task computing model that can efficiently support the various computationally expensive problems of subgraph search; and (2) scalable systems for learning graph neural networks. These systems effectively complement the diversity needs of graph-parallel tools that can flexibly work together in a comprehensive graph processing pipeline for real applications, with the capability of capturing structural features. This tutorial will provide an effective categorization of the recent systems in these two directions based on their computing models and adopted techniques, and will review the key design ideas of these systems. 
    more » « less
  2. Pregel-like systems are popular for iterative graph processing thanks to their user-friendly vertex-centric programming model. However, existing Pregel-like systems only adopt a naïve checkpointing approach for fault tolerance, which saves a large amount of data about the state of computation and signi!cantly degrades the failure-free execution performance. Advanced fault tolerance/recovery techniques are left unexplored in the context of Pregel-like systems. This paper proposes a non-invasive lightweight checkpointing (LWCP) scheme which minimizes the data saved to each checkpoint, and additional data required for recovery are generated online from the saved data. This improvement results in 10x speedup in checkpointing, and an integration of it with a recently proposed log-based recovery approach can further speed up recovery when failure occurs. Extensive experiments veri!ed that our proposed LWCP techniques are able to signi!cantly improve the performance of both checkpointing and recovery in a Pregel-like system. 
    more » « less
  3. This paper presents GraphRex, an efficient, robust, scalable, and easy-to-program framework for graph processing on datacenter infrastructure. To users, GraphRex presents a declarative, Datalog-like interface that is natural and expressive. Underneath, it compiles those queries into efficient implementations. A key technical contribution of GraphRex is the identification and optimization of a set of global operators whose efficiency is crucial to the good performance of datacenter-based, large graph analysis. Our experimental results show that GraphRex significantly outperforms existing frameworks---both high- and low-level---in scenarios ranging across a wide variety of graph workloads and network conditions, sometimes by two orders of magnitude. 
    more » « less